Retinotopic patterns of correlated fluctuations in visual cortex reflect the dynamics of spontaneous perceptual suppression.
نویسندگان
چکیده
While viewing certain stimuli, perception changes spontaneously in the face of constant input. For example, during "motion-induced blindness" (MIB), a small salient target spontaneously disappears and reappears when surrounded by a moving mask. Models of such bistable perceptual phenomena posit spontaneous fluctuations in neuronal activity throughout multiple stages of the visual cortical hierarchy. We used fMRI to link correlated activity fluctuations across human visual cortical areas V1 through V4 to the dynamics (rate and duration) of MIB target disappearance. We computed the correlations between the time series of fMRI activity in multiple retinotopic subregions corresponding to MIB target and mask. Linear decomposition of the matrix of temporal correlations revealed spatial patterns of activity fluctuations, regardless of whether or not these were time-locked to behavioral reports of target disappearance. The spatial pattern that dominated the activity fluctuations during MIB was spatially nonspecific, shared by all subregions, but did not reflect the dynamics of perception. By contrast, the fluctuations associated with the rate of MIB disappearance were retinotopically specific for the target subregion in V4, and the fluctuations associated with the duration of MIB disappearance states were target-specific in V1. Target-specific fluctuations in V1 have not previously been identified by averaging activity time-locked to behavioral reports of MIB disappearance. Our results suggest that different levels of the visual cortical hierarchy shape the dynamics of perception via distinct mechanisms, which are evident in distinct spatial patterns of spontaneous cortical activity fluctuations.
منابع مشابه
Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics
When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical proc...
متن کاملNoisy Spiking in Visual Area V2 of Amblyopic Monkeys.
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. While increased 'intrinsic noise' is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here we tested the idea that perceptual noise is linked to the neuron...
متن کاملTHE EFFECT OF POSTERIOR CEREBRAL PULMONARY DIRECT ELECTRICAL STIMULATION (TDCS) ON IMPROVING SPATIAL, VISUAL, AND VERBAL PERCEPTUAL ABILITIES
Background & Aims: Direct electrical stimulation of the brain is a therapeutic technique that can be effective in improving visual, verbal, and spatial perception. The present study investigated the effect of direct electrical stimulation (tDCS) of the posterior parietal cortex on improving spatial, visual, and verbal perceptual abilities. Materials & Methods: In this quasi-experimental study,...
متن کاملRelationship of Correlated Spontaneous Activity to Functional Ocular Dominance Columns in the Developing Visual Cortex
Utilizing a multielectrode array to record spontaneous and visually evoked activity of cortical neurons in area 17, we investigate the relationship between long-range correlated spontaneous activity and functional ocular dominance columns during early ferret postnatal development (P24-P29). In regions of visual cortex containing alternating ocular dominance patches, periodic fluctuations in cor...
متن کاملSpontaneous Fluctuations and Non-linear Ignitions: Two Dynamic Faces of Cortical Recurrent Loops
Recent human neurophysiological recordings have uncovered two fundamental modes of cerebral cortex activity with distinct dynamics: an active mode characterized by a rapid and sustained activity ("ignition") and a spontaneous (resting-state) mode, manifesting ultra-slow fluctuations of low amplitude. We propose that both dynamics reflect two faces of the same recurrent loop mechanism: an integr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2013